Selective Aerobic Oxidation of Benzyl Alcohol Driven by Visible Light on Gold Nanoparticles Supported on Hydrotalcite Modified by Nickel Ion

نویسندگان

  • Dapeng Guo
  • Yan Wang
  • Peng Zhao
  • Meifen Bai
  • Hui Xin
  • Zhi Guo
  • Jingyi Li
چکیده

A series of hydrotalcite (HT) and hydrotalcite modified by the transition metal ion Ni(II) was prepared with a modified coprecipitation method before being loaded with gold nanoparticles. The gold supported on Ni3Al hydrotalcite with a Ni2+/Al3+ molar ratio of 3:1 was investigated. Different techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflection spectrum (UV-vis DRS) were applied to characterize the catalysts. A single-phase catalyst with high crystallinity, a layered structure and good composition was successfully fabricated. Good conversions and superior selectivities in the oxidation of benzyl alcohol and its derivatives were obtained with visible light due to the effect of localized surface plasmon resonance (LSPR) of gold nanoparticles and the synergy of the transition metal ion Ni(II). This reaction was proven to be photocatalytic by varying the intensity and wavelength of the visible light. The catalyst can be recycled three times. A corresponding photocatalytic mechanism of the oxidation reaction of benzyl alcohol was proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles

Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for t...

متن کامل

Selective oxidation of alcohols in aqueous suspensions of rhodium ion-modified TiO2 photocatalysts under irradiation of visible light.

Photocatalytic oxidation of benzyl alcohols in aqueous suspensions of rhodium ion-modified titanium(iv) oxide (Rh(3+)/TiO2) in the presence of O2 under irradiation of visible light was examined. In the photocatalytic oxidation of benzyl alcohol, benzaldehyde was obtained in a high yield (97%) with >99% conversion of benzyl alcohol. Rh(3+)/TiO2 photocatalysts having various physical properties w...

متن کامل

Aerobic oxidation of alcohols over hydrotalcite-supported gold nanoparticles: the promotional effect of transition metal cations.

Chromium (III)-containing hydrotalcites show strong synergy with gold nanoparticles in achieving high activity in the aerobic oxidation of alcohols.

متن کامل

Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction.

Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantu...

متن کامل

C2fd20153d 365..378

Trimetallic Au–Pd–Pt nanoparticles have been supported on activated carbon by the sol-immobilisation method. They are found to be highly active and selective catalysts for the solvent-free aerobic oxidation of benzyl alcohol. The addition of Pt promotes the selectivity to the desired product benzaldehyde at the expense of toluene formation. Detailed aberration corrected STEM-XEDS analysis confi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016